
Model-Based Calibration
Toolbox

For Use with MATLAB® and Simulink®

Computation

Visualization

Programming

Simulation

Model-Based Calibration Toolbox
Reference
Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model-Based Calibration Toolbox Reference
© COPYRIGHT 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2005 Online only New for Version 3.0 (Release 14SP3+)

Contents

Commands – Categorical List

1
Handling Data . 1-2

Handling Projects . 1-4

Handling Test Plans . 1-5

Handling Models . 1-6
Hierarchical Models . 1-6
Local Models . 1-7
Response Models . 1-9
Models . 1-10
Model Parameters . 1-11

Commands — Alphabetical List

2

i

ii Contents

1

Commands – Categorical
List

To use the Model-Based Calibration Toolbox at the command line we provide
a number of objects you can use in order to manipulate data, and use that
data to build, select and export models. The following sections describe
the properties and methods of these objects, divided into categories for the
following aspects of modeling:

Handling Data (p. 1-2) Links to the properties and methods
available for data objects.

Handling Projects (p. 1-4) Links to the properties and methods
available for project objects.

Handling Test Plans (p. 1-5) Links to the properties and methods
available for test plan objects.

Handling Models (p. 1-6) Links to the properties and methods
available for model objects.

1 Commands – Categorical List

Handling Data
mbcmodel.data — Properties

Filters Structure array holding the
user-defined filters

IsBeingEdited Boolean signaling if the data is being
edited

IsEditable Boolean signaling whether data is
editable

Name Name of the project, data, test plan
or model.

NumberOfRecords Total number of records in a data
object

NumberOfTests Total number of tests being used in
the model

Owner The object from which the data was
received

RecordsPerTest Number of records in each test

SignalNames Names of the signals held by the
data

SignalUnits Names of the units in the data

TestFilters Structure array holding the
user-defined test filters

UserVariables Structure array holding the
user-defined variables

mbcmodel.data — Methods

AddFilter Add a user-defined filter to a data set

AddTestFilter Add a user-defined test filter to data
set

1-2

Handling Data

AddVariable Add a user-defined variable to data
set

Append Append data to a data set

BeginEdit Begin an editing session on a data
object

CommitEdit Update temporary changes in the
data

DefineNumberOfRecordsPerTest Define the exact number of records
per test

DefineTestGroups Define rule-based test groupings

ExportToMBCDataStructure Export data to an MBC data
structure

ImportFromFile Load data from a file

ImportFromMBCDataStructure Load data from an MBC data
structure

ModifyFilter Modify a user-defined filter in a data
set

ModifyTestFilter Modify a user-defined test filter in
a data set

ModifyVariable Modify a user-defined variable in a
data set

RemoveFilter Remove a user-defined filter from a
data set

RemoveTestFilter Remove a user-defined test filter
from a data set

RemoveVariable Remove a user-defined variable from
a data set

RollbackEdit Undo most recent changes to the
data

Value Get the double data from a data
object

1-3

1 Commands – Categorical List

Handling Projects
mbcmodel.project — Properties

Data Array of data objects contained in
the project or used in the test plan

Filename Full path to the file for the project

Modified Boolean signaling whether project
has been modified.

Name Name of the project, data, test plan
or model.

TestPlans Array of test plan objects contained
in the project

mbcmodel.project — Methods

CopyData Create a data object from a copy of
an existing object

CreateData Create a data object

CreateTestplan Create a new test plan

Load Load an existing project file

New Create a new project file

Remove Removes the project, test plan, or
model.

RemoveData Remove data from the project

Save Save project to currently selected
filename

SaveAs Save project to a new file

1-4

Handling Test Plans

Handling Test Plans
mbcmodel.testplan — Properties

Data Array of data objects contained in
the project or used in the test plan

InputSignalNames Names of the signals in the data that
are being modeled

InputsPerLevel Number of inputs at each level in
the model

Levels Number of levels in the hierarchical
model

Name Name of the project, data, test plan
or model.

Responses Array of available responses for the
test plan

mbcmodel.testplan — Methods

AttachData Attach data from the project to this
particular test plan

CreateResponse Create a new response model for the
test plan

DetachData Detach data from the test plan

GetDesignMatrix Retrieve design points from a test
plan.

Remove Removes the project, test plan, or
model.

1-5

1 Commands – Categorical List

Handling Models
The following sections list the properties and methods for these model objects:

• “Hierarchical Models” on page 1-6

• “Local Models” on page 1-7

• “Response Models” on page 1-9

• “Models” on page 1-10

• “Model Parameters” on page 1-11

Hierarchical Models
mbcmodel.hierarchicalresponse — Properties

InputSignalNames Names of the signals in the data that
are being modeled

Level Level in the test plan of this response

LocalResponses Array of LocalResponses for this
response

Name Name of the project, data, test plan
or model.

NumberOfTests Total number of tests being used in
the model

ResponseSignalName Name of the signal or response
feature being modeled

mbcmodel.hierarchicalresponse — Methods

AlternativeModelStatistics Summary Statistics for alternative
models

CreateAlternativeModels Create a number of alternative
models from a model template

DoubleInputData Data being used as input to this
model

1-6

Handling Models

DoubleResponseData Data being used as output to this
model for fitting

Export Make command-line or Simulink
export model

OutlierIndices Indices of the DoubleInputData
marked as outliers

PEV Predicted Error Variance of the
model at specified inputs

PredictedValue Predicted Value of the model at
specified inputs

Remove Removes the project, test plan, or
model.

SummaryStatistics Summary statistics for the response

Local Models
mbcmodel.localresponse — Properties

InputSignalNames Names of the signals in the data that
are being modeled

Level Level in the test plan of this response

Name Name of the project, data, test plan
or model.

NumberOfTests Total number of tests being used in
the model

ResponseFeatures Array of ResponseFeatures for this
response

ResponseSignalName Name of the signal or response
feature being modeled

1-7

1 Commands – Categorical List

mbcmodel.localresponse — Methods

AlternativeModelStatistics Summary Statistics for alternative
models

CreateAlternativeModels Create a number of alternative
models from a model template

DiagnosticStatistics Diagnostic statistics for the response

DoubleInputData Data being used as input to this
model

DoubleResponseData Data being used as output to this
model for fitting

Export Make command-line or Simulink
export model

MakeHierarchicalResponse Build a two-stage model from
response feature models and
optionally run MLE (Maximum
Likelihood Estimation)

OutlierIndices Indices of the DoubleInputData
marked as outliers

OutlierIndicesForTest Indices marked as outliers for a
particular test

PEVForTest Local model Predicted Error
Variance for a particular test

PredictedValueForTest Predicted local model response for a
particular test

Remove Removes the project, test plan, or
model.

RemoveOutliers Remove outliers in the input data by
index or rule, and refit models

RemoveOutliersForTest Remove outliers on a particular test
by index or rule and refit models

SummaryStatistics Summary statistics for the response

1-8

Handling Models

Response Models
mbcmodel.response — Properties

AlternativeResponses Array of alternative responses for
this response

InputSignalNames Names of the signals in the data that
are being modeled

Level Level in the test plan of this response

Name Name of the project, data, test plan
or model.

NumberOfTests Total number of tests being used in
the model

ResponseSignalName Name of the signal or response
feature being modeled

mbcmodel.response — Methods

AlternativeModelStatistics Summary Statistics for alternative
models

ChooseAsBest Choose best model from alternative
responses.

CreateAlternativeModels Create a number of alternative
models from a model template

DiagnosticStatistics Diagnostic statistics for the response

DoubleInputData Data being used as input to this
model

DoubleResponseData Data being used as output to this
model for fitting

Export Make command-line or Simulink
export model

OutlierIndices Indices of the DoubleInputData
marked as outliers

1-9

1 Commands – Categorical List

PEV Predicted Error Variance of the
model at specified inputs

PredictedValue Predicted Value of the model at
specified inputs

Remove Removes the project, test plan, or
model.

RemoveOutliers Remove outliers in the input data by
index or rule, and refit models

SummaryStatistics Summary statistics for the response

Models
Response objects contain an mbcmodel.model object with the following
properties and methods.

See also ModelDialog, a function for altering model type and settings.

mbcmodel.model — Properties

NumberOfInputs The number of inputs to the model

Parameters The parameters in the model

Response The response for a model object

Status The model status: fitted, not fitted
or best

XData The X (or input) data for a model

XDataNames The X data (or input) variable names
for a model

YData The Y (or response) data for a model

1-10

Handling Models

mbcmodel.model — Linear Model Properties

ParameterStatistics Calculates parameter statistics for
the linear model

StepwiseRegression Change stepwise selection status for
specified terms

mbcmodel.model — Methods

Fit Fit the model to new data or its
existing data, and provide summary
statistics

Jacobian Calculate the Jacobian matrix for
the model at existing or new X
points.

PEV Predicted Error Variance of the
model at specified inputs

PredictedValue Predicted Value of the model at
specified inputs

UpdateResponse Replaces the model in the response

Model Parameters
mbcmodel.modelparameters — Properties

These properties of the mbcmodel.modelparameters object are all read-only.
An mbcmodel.modelparameters object is contained within the Parameters
property of an mbcmodel.model object.

Names The parameter names for a model

NumberOfParameters The number of parameters included
in the model

Values The values of model parameters

1-11

1 Commands – Categorical List

mbcmodel.modelparameters — Linear Model Properties

SizeOfParameterSet The number of parameters for a
model

StepwiseSelection Which model parameters are
currently included and excluded

StepwiseStatus The stepwise status of parameters
in the model

mbcmodel.modelparameters — RBF Model Properties

Centers The centers of an RBF model

Widths The width data from an RBF model

1-12

2

Commands — Alphabetical
List

This chapter is a reference for the properties, methods, and functions in the
Model-Based Calibration Toolbox command line interface. Properties and
methods are listed alphabetically.

AddFilter
AddTestFilter
AddVariable
AlternativeModelStatistics
AlternativeResponses
Append
AttachData
BeginEdit
Centers
ChooseAsBest
CommitEdit
CopyData
CreateAlternativeModels
CreateData
CreateProject
CreateResponse
CreateTestplan
Data
DefineNumberOfRecordsPerTest
DefineTestGroups
DetachData
DiagnosticStatistics
DoubleInputData

2 Commands — Alphabetical List

DoubleResponseData
Export
ExportToMBCDataStructure
Filename
Filters
Fit
GetDesignMatrix
ImportFromFile
ImportFromMBCDataStructure
InputSignalNames
InputsPerLevel
IsBeingEdited
IsEditable
Jacobian
Level
Levels
Load
LocalResponses
MakeHierarchicalResponse
ModelDialog
Modified
ModifyFilter
ModifyTestFilter
ModifyVariable
Name
Names
New
NumberOfInputs
NumberOfParameters
NumberOfRecords
NumberOfTests
OutlierIndices
OutlierIndicesForTest
Owner
Parameters
ParameterStatistics
PEV

2-2

PEVForTest
PredictedValue
PredictedValueForTest
RecordsPerTest
Remove
RemoveData
RemoveFilter
RemoveOutliers
RemoveOutliersForTest
RemoveTestFilter
RemoveVariable
Response
ResponseFeatures
Responses
ResponseSignalName
RollbackEdit
Save
SaveAs
SignalNames
SignalUnits
SizeOfParameterSet
Status
StepwiseRegression
StepwiseSelection
StepwiseStatus
SummaryStatistics
TestFilters
TestPlans
UpdateResponse
UserVariables
Value
Values
Widths
XData
XDataNames
YData

2-3

AddFilter

Purpose Add a user-defined filter to a data set

Syntax D = AddFilter(D, expr)

Description This is a method of mbcmodel.data.

A filter is a constraint on the data set used to exclude some records.
You define the filter using logical operators or a logical function on the
existing variables.

D is the mbcmodel.data object you want to filter.

expr is an input string holding the expression that defines the filter.

Examples AddFilter(D, 'AFR < AFR_CALC + 10');

The effect of this filter is to keep all records where AFR < AFR_CALC
+ 20.

AddFilter(D, 'MyFilterFunction(AFR, RPM, TQ, SPK)');

The effect of this filter is to apply the function MyFilterFunction using
the variables AFR, RPM, TQ, SPK.

All filter functions receive an nx1 vector for each variable and must
return an nx1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a record to discard.

See Also ModifyFilter; RemoveFilter; Filters; AddTestFilter
ModifyTestFilter

2-4

AddTestFilter

Purpose Add a user-defined test filter to data set

Syntax D = AddTestFilter(D, expr)

Description This is a method of mbcmodel.data.

A test filter is a constraint on the data set used to exclude some entire
tests. You define the test filter using logical operators or functions on
the existing variables.

D is your data object

expr is the input string holding the definition of the new test filter.

Examples AddTestFilter(d1, 'any(n>1000)');

The effect of this filter is to include all tests in which all records have
speed (n) greater than 1000.

Similar to filters, test filter functions are iteratively evaluated on each
test, receiving an nx1 vector for each variable input in a test, and must
return an 1x1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a test to discard.

AddTestFilter(data, 'length(LOGNO) > 6');

The effect of this filter is to include all tests with more than 6 records.

See Also ModifyTestFilter; RemoveTestFilter; TestFilters; AddFilter

2-5

AddVariable

Purpose Add a user-defined variable to data set

Syntax D = AddVariable(D, expr, units)

Description This is a method of mbcmodel.data.

You can define new variables in terms of existing variables. Note that
variable names are case sensitive.

D is your data object

expr is the input string holding the definition of the new variable

units is an optional input string holding the units of the variable

Examples AddVariable(D, 'MY_NEW_VARIABLE = TQ*AFR/2');
AddVariable(D, 'funcVar = MyVariableFunction(TQ, AFR, RPM)',
'lb');
AddVariable(D, 'TQ=tq');

The last example could be useful if the signal names in the data do not
match the model input factor names in the test plan template file.

See Also ModifyVariable; RemoveVariable; UserVariables

2-6

AlternativeModelStatistics

Purpose Summary Statistics for alternative models

Syntax S = AlternativeModelStatistics(R)
S = AlternativeModel Statistics(R, Name)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This returns an array (S) of summary statistics of all the alternative
model fits, to be used to select the best model. These are the summary
statistics seen in the list view at the bottom of the Model Browser GUI
in any model view.

You must use CreateAlternativeModels before you can compare the
alternative responses using AlternativeModelStatistics. Then use
ChooseAsBest.

R is the model object whose alternative response models you want to
compare. R could be a local (L), response feature (R) or hierarchical
response (HR) model.

S is a structure containing Statistics and Names fields.

• S.Statistics is a matrix of size (number alternative responses x
number of statistics)

• S.Names is a cell array containing the names of all the statistics

The available statistics vary according to what kind of parent model
(two-stage, local, response feature or response) produced the alternative
models, and include PRESS RMSE, RMSE, and Two-Stage RMSE.

All the available statistics are calculated unless you specify which you
want. You can specify only the statistics you require using the following
form:

S = AlternativeModel Statistics(R, Name)

2-7

AlternativeModelStatistics

This returns a double matrix containing only the statistics specified
in Name.

Note that you use SummaryStatistics to examine the fit of the current
model, and AlternativeModelStatistics to examine the fit of several
alternative child models.

Examples S = AlternativeModel Statistics(R);

See Also CreateAlternativeModels; SummaryStatistics; ChooseAsBest

2-8

AlternativeResponses

Purpose Array of alternative responses for this response

Syntax altR = get(R, 'AlternativeResponses')

Description This is a property of the response model object, mbcmodel.response (R).

It returns a list of alternative responses used for one-stage or response
feature models.

Examples R = get(testplan, 'Responses');
TQ = R(1);
AR = get(TQ, 'AlternativeResponses');

See Also LocalResponses; ResponseFeatures

2-9

Append

Purpose Append data to a data set

Syntax D = Append(D, otherData)

Description This is a method of mbcmodel.data.

You can use this to add new data to your existing data set, D.

otherData is the input argument holding the extra data to add below
the existing data. This argument can either be an mbcmodel.data object
or a double array. The behavior is different depending on the type.

If otherData is an mbcmodel.data object then Append will look for
common SignalNames between the two sets of data. If no common
SignalNames are found then a error will be thrown. Any common
signals will be Appended to the existing data and other signals will be
filled with NaN.

If otherData is a double array then it must have exactly the same
number of columns as there are SignalNames in the data, and a simple
vertcat (vertical concatenation) is applied between the existing data
and otherData.

Examples Append(D, CreateData('aDataFile.xls'));
Append(D, rand(10,100));

See Also CreateData

2-10

AttachData

Purpose Attach data from the project to this particular test plan

Syntax newD = AttachData(T, D, Property1, Value, Property2, Value...)

Description This is a method of mbcmodel.testplan.

Use it to attach the data you want to model to the test plan.

T is the test plan object, D is the data object.

The following table shows the valid properties and their corresponding
possible values. These are the settings shown in the last page of the
Data Wizard (if there is a design) in the Model Browser. For more
information on the meaning of these settings, refer to the Data Wizard
section (under Data) in the Model Browser User’s Guide. Note that if
the testplan has responses set up the models will be fitted when you
attach data.

Property Value Default

unmatcheddata {’all’, ’none’} 'all'

moredata {’all’, ’closest’} 'all'

moredesign {’none’, ’closest’} 'none'

tolerances [1xNumInputs
double]

ModelRange/20

Examples newD = AttachData(T1, D1, `more data', `all');

tol = [0.075, 100, 1, 2];
unmatch = 'all';
moredata = 'all';
moredes = 'none';
AttachData(testplan, data ,...

'tolerances', tol,...
'unmatcheddata', unmatch,...
'moredata', moredata,...

2-11

AttachData

'moredesign', moredes);

See Also Data; DetachData

2-12

BeginEdit

Purpose Begin an editing session on a data object

Syntax D = BeginEdit(D)

Description This is a method of mbcmodel.data.

You must call this method before you can make any changes to a data
object.

There are no input arguments. You must call BeginEdit before
attempting to modify your data object (D in the example below) in
any way. An error will be thrown if this condition is not satisfied.
Data which cannot be edited (see IsEditable) will throw an error if
BeginEdit is called.

Examples BeginEdit(D);

See Also CommitEdit; RollbackEdit; IsEditable; IsBeingEdited

2-13

Centers

Purpose The centers of an RBF model

Syntax centers = get(params, 'Centers')

Description This is a property of mbcmodel.modelparameters, for Radial
Basis Function (RBF) models only. This returns an array of size
number_of_centers by number_of_variables.

Examples centers = get(params, 'Centers');

See Also Widths

2-14

ChooseAsBest

Purpose Choose best model from alternative responses.

Syntax ChooseAsBest(R, Index)

Description This is a method of the response model object, mbcmodel.response.
This is the same function as selecting the best model in the Model
Selection window of the Model Browser GUI. For a local model
MakeHierarchicalResponse performs a similar function.

R is the object containing the response model

Index is the number of the response model you want to choose as best.
Use AlternativeResponses to find the index for each response model,
and use AlternativeModelStatistics to choose the best fit.

Examples ChooseAsBest(R, AlternativeModel)
RMSE = AlternativeModelStatistics(R, 'RMSE');
[mr, Best] = min(RMSE);
ChooseAsBest(R, Best);

See Also AlternativeResponses; AlternativeModelStatistics;
DiagnosticStatistics; MakeHierarchicalResponse

2-15

CommitEdit

Purpose Update temporary changes in the data

Syntax D = CommitEdit(D)

Description This is a method of mbcmodel.data.

Use this to apply changes you have made to the data, such as creating
new variables and applying filters to remove unwanted records.

There are no input arguments. Once you have finished editing your
data object D you must commit your changes back to the project. Data
can only be committed if both IsEditable and IsBeingEdited are true.
CommitEdit will throw an error if these conditions are not met.

Examples D = get(P, 'Data');
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
CommitEdit(D);

For an example situation which results in CommitEdit failing:

D = get(p, 'Data');
D1 = get(p, 'Data');
BeginEdit(D1);
tp = get(p, 'Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point IsEditable(D1) becomes false because it is now Attached
to the test plan and hence can only be modified from the test plan. If
you now enter:

OK = get(D1, 'IsEditable')

2-16

CommitEdit

the answer is false.

If you now enter:

CommitEdit(D1);

An error is thrown because the data is no longer editable. The error
message informs you that the data may have been attached to a test
plan and can only be edited from there.

See Also BeginEdit; RollbackEdit; IsEditable; IsBeingEdited

2-17

CopyData

Purpose Create a data object from a copy of an existing object

Syntax newD = CopyData(P, D)
newD = CopyData(P, Index)

Description This is a method of mbcmodel.project.

Use this to duplicate data, for example if you want to make changes for
further modeling but want to retain the existing data set. You can refer
to the data object either by name or index.

P is the project object.

D is the data object you want to copy.

Index is the index of the data object you want to copy.

Examples D2 = CopyData(P1, D1);

See Also Data; CreateData; RemoveData

2-18

CreateAlternativeModels

Purpose Create a number of alternative models from a model template

Syntax R = CreateAlternativeModels(R, models, criteria)
R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This is the same as the Build Models function in the Model Browser
GUI. A selection of child node models are built. The results depend on
where you call this method from. Note that the hierarchical model is
automatically constructed when CreateAlternativeModels is called
for a local model.

• This option makes alternative response feature models for each
response feature.

R = CreateAlternativeModels(R, models, criteria)

- Models is the list of models (from the model template)

- Criteria is the selection criteria for best model (from the statistics
available from AlternativeModelStatistics).

• This option makes alternative local models as well as alternative
response feature models

R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

- LocalModels is the list of local models - you must pass in an
empty matrix)

- LocalCriteria is 'Two-Stage RMSE'

- GlobalModels is the list of global models (from the model template)

- GlobalCriteria is the selection criteria for best model

2-19

CreateAlternativeModels

You construct a model template (such as ‘mymodels.mbm’) in the
Model Browser. From any response (global or one-stage model) with
alternative responses (child nodes), select Model -> Make Template.
You can save the child node model types of your currently selected
modeling node as a model template. Alternatively from any response
click Build Models in the toolbar and create a series of alternative
response models in the dialog.

Examples mymodels = 'mymodels.mbm';
mlist = {};
load('-mat', mymodels);
critera = 'PRESS RMSE';
CreateAlternativeModels(R, [], 'Two-Stage RMSE', mlist,
criteria);

Note that the model template contains the variable mlist.

See Also AlternativeModelStatistics

2-20

CreateData

Purpose Create a data object

Syntax D = CreateData(filename, filetype)

D = CreateData(P, filename, filetype)

Description The first syntax is a function, the second (using P) is a method of
mbcmodel.project. They both create a data object for use with
command-line MBC. You can use the first syntax to manipulate data
independently of any project, and the second method attaches the data
to a particular project object.

Use this to create a new data set for modeling.

P is the project object.

filename and filetype are both optional arguments that are passed to
ImportFromFile to ensure that there is a quick mechanism for creating
data from a file. You must call BeginEdit before you can make other
changes to the data if you want, such as adding filters.

If you do not specify a filename to use the shortcut for loading data,
you must call BeginEdit and then fill the empty data set by calling
ImportFromFile. You can then add filters or user variables as before,
then call CommitEdit to save your changes.

filename is a string holding the full path to the file to load.

filetype is an optional file type to load. See
xregcheckindataloadingfunction for the specification of the allowed
filetypes. This defaults to ’auto’ which will attempt to guess the filetype
based on the extension of the file being loaded. i.e. if the file extension
is .xls then MBC will try the Excel File Loader.

Examples data = CreateData(P, 'D:\MBCWork\data1.xls');
D = CreateData(P);

Where P is an mbcmodel.project object.

2-21

CreateData

See Also BeginEdit; CopyData; RemoveData; Data; ImportFromFile; CommitEdit

2-22

CreateProject

Purpose Create a project object

Syntax P = CreateProject

Description This is a function that creates an mbcmodel.project object.

P is the project object.

Examples P = CreateProject;

2-23

CreateResponse

Purpose Create a new response model for the test plan

Syntax R = CreateResponse(T, name)

Description This is a method of mbcmodel.testplan.

T is the test plan object, R is the new response model.

name is the variable name for the new response.

Examples R = CREATERESPONSE(T, 'torque');
TQ_response = CreateResponse(testplan, 'TQ');

See Also Responses

2-24

CreateTestplan

Purpose Create a new test plan

Syntax T = CreateTestplan(P, templateFilename, name)

Description This is a method of the mbcmodel.project object.

You need a test plan template to use this method from the command
line. You set these up in the Model Browser GUI. This set up includes
number of stages, inputs, base models, and designs. If the test plan is
used as part of a previous project it is also possible to save response
models in the test plan.

Once you have created a new test plan (using a template) you can add
data to model, and new responses. Note that the model input signal
names specified in the template must match the signal names in the
data.

P is the project object.

templateFilename is the full name and path to the template file.

name is the optional name for the new test plan object.

Examples T = CreateTestplan(P1, 'd:\MBCwork\TQtemplate1', 'newtestplan')
testplan = CreateTestplan(P, 'example_testplan')

See Also AttachData; CreateResponse; Responses; Data; Levels;
InputSignalNames; InputsPerLevel

2-25

Data

Purpose Array of data objects contained in the project or used in the test plan

Syntax allD = get(p, 'Data')
allD = get(T, 'Data')

Description This is a property of mbcmodel.project and mbcmodel.testplan.

It returns an array of mbcmodel.data objects. There may be many data
objects in a project, but a test plan can only have one or none.

Examples allD = get(p, 'Data');

For a project object p, this example returns an nx1 array of all the data
objects.

allD = get(T, 'Data');

For the test plan object T, this example returns a 1x1 array if the test
plan has a data object attached, and 0x1 otherwise.

See Also CreateData; RemoveData; CopyData

2-26

DefineNumberOfRecordsPerTest

Purpose Define the exact number of records per test

Syntax D = DefineNumberOfRecordsPerTest(D, number, testnumAlias)

Description This is a method of mbcmodel.data.

You can use this to set one test per record for one-stage modeling.

number is the input specifying the number of records to include in each
test. Most usually this will be used to specify one test per record.

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumaAias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

Examples DefineNumberOfRecordsPerTest(D, 1);
DefineNumberOfRecordsPerTest(D, 10, 'MYLOGNO');

See Also DefineTestGroups

2-27

DefineTestGroups

Purpose Define rule-based test groupings

Syntax D = DefineTestGroups(D, variables, tolerances, testnumAlias,
reorder)

Description This is a method of mbcmodel.data.

You can impose rules to collect records of the current data set (D) into
groups; these groups are referred to as tests. Test groupings are used to
define hierarchical structure in the data for two-stage modeling.

Select a variable or variables to group by and set tolerances. The
tolerance is used to define groups: on reading through the data, when
the value of any specified variable changes by more than the tolerance,
a new group is defined.

variables is the input cell array of strings holding the SignalNames on
which to define the test groupings

tolerances is the input double array of the same length as variables
holding the required tolerances for the test grouping definition

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumAlias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

reorder is an optional Boolean indicating that the data should be
reordered within the data set. Defaults to false.

See the section on Test Groupings (under Data) in the Model Browser
User’s Guide for more information on these inputs.

2-28

DefineTestGroups

Examples DefineTestGroups(D, {'AFR' 'RPM'}, [0.1 30], 'MYLOGNO', false);

See Also DefineNumberOfRecordsPerTest; NumberOfTests

2-29

DetachData

Purpose Detach data from the test plan

Syntax T = DetachData(T)

Description This is a method of mbcmodel.testplan.

T is the test plan object. A test plan can only use a single data set, so
you do not need to specify the data object.

Examples DetachData(T1);

See Also AttachData

2-30

DiagnosticStatistics

Purpose Diagnostic statistics for the response

Syntax S = DiagnosticStatistics(R, TestNumbers, Stats)

Description This is a method of the local and response model objects,
mbcmodel.localresponse and mbcmodel.response.

The options available are model-specific and are the same options
shown in the drop-down menus of the scatter plots (the top plots) in the
local and global (response feature) model views of the toolbox GUI.

S is a structural array containing Statistics and Names fields.

R is the response model object.

Testnumbers specifies the index into tests for local or hierarchical
models.

Stats is an optional input that defines which diagnostic statistics you
want from the available list. If you don’t specify Stats, you get all
available statistics.

A row is set to NaN if that point is removed.

Examples studentRes = DiagnosticStatistics(local, tn, 'Studentized
residuals');

See Also SummaryStatistics; AlternativeModelStatistics

2-31

DoubleInputData

Purpose Data being used as input to this model

Syntax X = DoubleInputData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(X) containing the input data used for fitting the model.

R is the response model object

TestNumber is an optional input to specify the tests you want.

Examples X = DoubleInputData(R);
x = DoubleInputData(local, tn);

See Also DoubleResponseData

2-32

DoubleResponseData

Purpose Data being used as output to this model for fitting

Syntax Y = DoubleResponseData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(Y) containing the response data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples Y = DoubleResponseData(R);
y = DoubleResponseData(local, tn);

See Also DoubleInputData

2-33

Export

Purpose Make command-line or Simulink export model

Syntax M = Export(R, Format)

Description This is a method of these model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

Format must be ’MATLAB' or ’Simulink'; an error will be thrown if this
is incorrect.

You can evaluate models exported to the MATLAB workspace in the
same way as when exported from the Model Browser. You can save
these models as a ‘*.mat’ file and load them into CAGE.

R is the object containing the response models from the node you are
exporting from.

Examples M = Export(R2, 'MATLAB');
mbt_model = Export(maxTQ, 'MATLAB');

2-34

ExportToMBCDataStructure

Purpose Export data to an MBC data structure

Syntax mbcStruct = ExportToMBCDataStructure (D)

Description This is a method of mbcmodel.data.

It converts the specified data object (D) to the MBC Data Structure
format.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1)

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined

• data is an array that holds the values of the variables (m x n)

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Technical Documents) in the Model Browser User’s Guide. See also
xregcheckindataloadingfunction for the specification.

Examples X = ExportToMBCDataStructure(D1);

See Also ImportFromMBCDataStructure

2-35

Filename

Purpose Full path to the file for the project

Syntax Name = get(P, 'Filename')

Description This is a property of mbcmodel.project.

Examples Name = get(P, 'Filename');

2-36

Filters

Purpose Structure array holding the user-defined filters

Syntax filt = get(D, `Filters')

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined filters, with the following fields for each filter:

• Expression — The string expression as defined in AddFilter or
ModifyFilter

• AppliedOK — Boolean indicating that the filter was successfully
applied

• RemovedRecords — Boolean vector indicating which records the filter
removed. Note that many filters could remove the same record

• Message — String holding information on the success or otherwise
of the filter

Examples filters = get(D1, 'Filters');

See Also AddFilter; ModifyFilter; RemoveFilter

2-37

Fit

Purpose Fit the model to new data or its existing data, and provide summary
statistics

Syntax statistics = Fit(model, optional X, optional Y)

Description This is a method of mbcmodel.model.

This fits the model to new data or its existing data. If X and Y are not
specified then the existing model XData and YData are used, otherwise
X and Y are placed in XData and YData and the model fitted.

The statistics returned are defined by the summary statistics
for the response object the model came from. To see these call
SummaryStatistics. These are the statistics that appear in the
Summary Statistics pane of the Model Browser GUI. The statistics
returned depend on the model type.

For a linear model, the statistics are:

’Observations’,’Parameters’,’Box-Cox’,’PRESS RMSE’,’RMSE’.

For a neural net model:

’Observations’,’Parameters’, ’Box-Cox’,’RMSE’, ’R^2’.

Examples statistics = Fit(knot)
statistics =

27.0000 7.0000 1.0000 3.0184 2.6584

See Also SummaryStatistics; UpdateResponse

2-38

GetDesignMatrix

Purpose Retrieve design points from a test plan.

Syntax design = GetDesignMatrix(T)

Description This is a method of mbcmodel.testplan.

It returns a double array holding the values of the design points.

Examples design = GetDesignMatrix(T);

2-39

ImportFromFile

Purpose Load data from a file

Syntax D = ImportFromFile(D, filename, filetype)

Description This is a method of the mbcmodel.data object.

First you must use CreateData, than BeginEdit before you can call
ImportFromFile to bring data into your new data object, D.

Note that you can specify filename and filetype when you call
CreateData as a shortcut for loading data from a file. You still need to
call BeginEdit before you can make changes to the data.

filename is a string holding the full path to the file to load.

filetype is an optional file type to load. See
xregcheckindataloadingfunction for the specification of the allowed
filetypes. This defaults to ’auto’ which will attempt to guess the filetype
based on the extension of the file being loaded. i.e. if the file extension
is .xls then MBC will try the Excel File Loader.

Examples ImportFromFile(D, 'D:\MBCData\Raw Data\testdata.xls');

See Also CreateData; BeginEdit; ImportFromMBCDataStructure; RemoveData;
Append

2-40

ImportFromMBCDataStructure

Purpose Load data from an MBC data structure

Syntax D = ImportFromMBCDataStructure(D, mbcStruct)

Description This is a method of mbcmodel.data.

First you must use CreateData, than BeginEdit before you can bring
data into your new data object.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1)

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined

• data is an array that holds the values of the variables (m x n)

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Technical Documents) in the Model Browser User’s Guide. See also
xregcheckindataloadingfunction for the specification.

Examples ImportFromMBCDataStructure(D, mbcStruct);

See Also ImportFromFile; CreateData; BeginEdit; RemoveData; Append;
ExportToMBCDataStructure

2-41

InputSignalNames

Purpose Names of the signals in the data that are being modeled

Syntax inputs = get(A, 'InputSignalNames')

Description This is a property of mbcmodel.testplan and the modeling objects
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

A can be a test plan (T) or model (L, R, HR) object.

Examples inputs = get(T, 'InputSignalNames');
InputFactors = get(thisRF, 'InputSignalNames');

See Also SignalNames

2-42

InputsPerLevel

Purpose Number of inputs at each level in the model

Syntax L = get(T, 'InputsPerLevel')

Description This is a property of mbcmodel.testplan.

This is a vector of length Levels. Each element defines the number of
inputs at that level. See for an explanation of the levels in a test plan.

Examples L = get(T, 'InputsPerLevel')
L =

2 4

This answer means the test plan T has 2 local inputs and 4 global inputs.

See Also Levels; Level

2-43

IsBeingEdited

Purpose Boolean signaling if the data is being edited

Syntax OK = get(D, 'IsBeingEdited')

Description This is a property of mbcmodel.data.

This Boolean property indicates that the data is currently being edited.
It also indicates that previously there was a successful call to BeginEdit
and hence that whatever changes have been applied can be undone by
calling RollbackEdit. It does not indicate that a call to CommitEdit
will necessarily succeed. See CommitEdit for an example of this case.

Examples OK = get(D, 'IsBeingEdited');

See Also BeginEdit; IsEditable; CommitEdit; RollbackEdit

2-44

IsEditable

Purpose Boolean signaling whether data is editable

Syntax OK = get(d, 'IsEditable')

Description This is a property of mbcmodel.data.

This Boolean property indicates if a particular piece of data is editable.
The following rules apply

• If the data was created using mbcmodel.CreateData and was not
Attached to a test plan it is editable.

• If the data was created or retrieved from the project and was not
Attached to a test plan it is editable.

• If the data was Attached to a test plan and was subsequently
retrieved from that test plan it is editable.

Examples D = get(p, `Data');
D1 = get(p, `Data');
BeginEdit(D1);
tp = get(p, `Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point get(D1, 'IsEditable') becomes false because D1 is now
Attached to the test plan and hence can only be modified from the test
plan. If you now enter:

OK = get(D1, 'IsEditable')

the answer is false.

See Also BeginEdit; IsBeingEdited; CommitEdit; RollbackEdit

2-45

Jacobian

Purpose Calculate the Jacobian matrix for the model at existing or new X points.

Syntax J = Jacobian(model, optional X)

Description This is a method of mbcmodel.model.

This calculates the Jacobian matrix for the model at existing or new
X points. If X is not specified then the existing XData is used. The
Jacobian is the regression matrix for linear models and RBF models.

The Jacobian matrix (for linear and RBF models) is the same as the
Regression Matix in the Design Evaluation Tool GUI. These matrices
only include the terms currently selected in the model.

If all terms are included (none removed by Stepwise) then the Jacobian
(for linear and RBF models) is the same as the Full FX matrix found in
the Design Evaluation Tool GUI. The Jacobian matrix only includes the
currently selected model terms.

To determine the condition number, use the MATLAB command
cond(J).

Examples J = Jacobian(knot);

See Also XData

2-46

Level

Purpose Level in the test plan of this response

Syntax level = get(R, 'Level')

Description This is a property for all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R is the response for which you want the level.

The level is usually 0 for hierarchical models, usually 1 for local models,
and usually 2 or 1 for response models. See for an explanation of what
Level indicates about a response.

Examples level = get(R, 'Level');

See Also Levels

2-47

Levels

Purpose Number of levels in the hierarchical model

Syntax levels = get(T, 'Levels')

Description This is a property of mbcmodel.testplan.

See for an explanation of what Levels mean.

Examples levels = get(T, 'Levels');

See Also Level

2-48

Load

Purpose Load an existing project file

Syntax P = Load(P, Filename)

Description This is a method of mbcmodel.project.

P is a project object, and Filename is the full path to the project you
want to load.

Examples P2 = Load(P2, 'D:/MBCwork/TQproject2');

See Also New

2-49

LocalResponses

Purpose Array of LocalResponses for this response

Syntax local = get(R, 'LocalResponses')

Description This is a property of the mbcmodel.hierarchicalresponse object.

It returns the local model response objects that belong to the
hierarchical response R.

See for an explanation of the relationship between the different
response types.

Examples local = get(TQ_response, 'LocalResponses');

2-50

MakeHierarchicalResponse

Purpose Build a two-stage model from response feature models and optionally
run MLE (Maximum Likelihood Estimation)

Syntax OK = MakeHierarchicalResponse(L,MLE)

Description This is a method of mbcmodel.localresponse.

This performs a similar function to ChooseAsBest for response
models. You can call MakeHierarchicalResponse directly, or
indirectly by calling CreateAlternativeModels for a local
model. If you call CreateAlternativeModels for a local model,
MakeHierarchicalResponse will be called automatically.

An error will be thrown if the local and response models are not ready
to calculate a two-stage model. This can be the case if you have created
alternative models and not chosen the best. A sufficient number of
response features models to calculate the two-stage model must be
selected.

L is the local model object

MLE can be true or false. If true, MLE will be calculated.

Examples OK = MakeHierarchicalResponse(L, true)

See Also ChooseAsBest

2-51

ModelDialog

Purpose Opens the Model Setup dialog where you can alter the model type

Syntax [newModel, OK] = ModelDialog(oldModel)

Description This is a function that you can only apply to mbcmodel.model objects.

This opens the Model Setup dialog where you can choose new model
types and settings. If you click Cancel to dismiss the dialog, OK =
false and newModel = oldModel. If you click OK to close the dialog,
then OK = true and newModel is your new chosen model setup. Data
and response remain the same as oldModel. The new model is refitted
when you click OK.

Call UpdateResponse to put the new model type back into the response.

Examples [RBF, OK] = ModelDialog(Cubic);

See Also UpdateResponse; Fit

2-52

Modified

Purpose Boolean signaling whether project has been modified.

Syntax Name = get(P, 'Modified')

Description This is a property of mbcmodel.project.

Examples Name = get(Project, 'Modified');

2-53

ModifyFilter

Purpose Modify a user-defined filter in a data set

Syntax D = ModifyFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available filters you
wish to modify. Use the property Filters to find the index for each filter.

expr is the input string holding the expression that defines the filter, as
for AddFilter.

Examples ModifyFilter(D, 3, 'AFR < AFR_CALC + 20');

The effect of this filter is to modify filter number 3 to keep all records
where AFR < AFR_CALC + 20.

ModifyFilter(D, 2, 'MyNewFilterFunction(AFR, RPM, TQ, SPK)');

This modifies filter number 2 to apply the function
MyNewFilterFunction.

See Also AddFilter; RemoveFilter; Filters

2-54

ModifyTestFilter

Purpose Modify a user-defined test filter in a data set

Syntax D = ModifyTestFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available test filters
you wish to modify. Use the property TestFilters to find the index
for each test filter.

expr is the input string holding the expression that defines the test
filter, as for AddTestFilter.

Examples ModifyTestFilter(d1, 2, 'any(n>2000)');

The effect of this is to modify test filter number 2 to include all tests in
which any records have speed (n) greater than 1000.

See Also AddTestFilter; RemoveTestFilter; TestFilters

2-55

ModifyVariable

Purpose Modify a user-defined variable in a data set

Syntax D = ModifyVariable(D, Index, expr, units)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
variables.

D is a data object.

Index is the input index to indicate which of the available variables
you wish to modify. Use the property UserVariables to find the index
for each variable.

expr is the input string holding the expression that defines the variable,
as for AddVariable

units is an optional input string holding the units of the variable

Examples ModifyVariable(D, 2, 'MY_NEW_VARIABLE = TQ*AFR/2');

See Also AddVariable; RemoveVariable; UserVariables

2-56

Name

Purpose Name of the project, data, test plan or model.

Syntax name = get(A, 'Name')

Description This is a property of project, data, test plan, and response objects.

‘A’ can be any test plan (T), data (D), project (P) or model (L, R, HR) object.

You can change the names of these objects as follows:

set(A, `Name', newName)

For response (output or Y data) signal names, see ResponseSignalName.

For model parameter names, see Names, and for model object input
names, see XDataNames.

For testplan and response object input names, see InputSignalNames,
and for data objects, see SignalNames.

Examples ResponseFeatureName = get(thisRF, 'Name');

See Also Names; InputSignalNames; SignalNames; XDataNames;
ResponseSignalName

2-57

Names

Purpose The parameter names for a model

Syntax N = get (params, 'Names')

Description This is a property of mbcmodel.modelparameters. It returns the names
of all the parameters in the model. These are read-only.

Examples N = get (paramsknot, 'Names')
N =
'1'
'N'
'N^2'
'N*L'
'N*A'
'L'
'L^2'
'L*A'
'A'
'A^2';

See Also NumberOfParameters; Values; Name

2-58

New

Purpose Create a new project file

Syntax P = New(P)

Description This is a method of mbcmodel.project. Use this to modify a project
object to make a new project from scratch. Note the current project gets
removed from memory when you open a new one.

P is the new project object.

Examples New(P);

See Also Load

2-59

NumberOfInputs

Purpose The number of inputs to the model

Syntax N = get(model, 'NumberOfInputs')

Description This is a property of mbcmodel.model. It returns the number of inputs
to the model.

Examples N = get(knot, 'NumberOfInputs');

See Also XData

2-60

NumberOfParameters

Purpose The number of parameters included in the model

Syntax N = get (knotparams, 'NumberOfParameters')

Description This is a read-only property of mbcmodel.modelparameters, for linear
models only.

The number returned is the number of parameters currently in the
model (you can remove some parameters by using StepwiseRegression).
To see which parameters are currently in the model, use
StepwiseSelection. Only parameters listed as ‘in’ are currently
included.

To see the the total possible number of parameters in a linear model,
use SizeOfParameterSet.

Use Names and Values to get the parameter names and values.

Examples N = get (knotparams, 'NumberOfParameters');

See Also SizeOfParameterSet; StepwiseSelection; StepwiseRegression;
Names; Values

2-61

NumberOfRecords

Purpose Total number of records in a data object

Syntax get(D, 'NumberOfRecords')

Description This is a property of data objects: mbcmodel.data.

Examples numRecords = get(Data, 'NumberOfRecords');

2-62

NumberOfTests

Purpose Total number of tests being used in the model

Syntax numtests = get(A,'NumberOfTests')

Description This is a property of all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response, and data objects mbcmodel.data. ’A’ can be any
model or data object.

Examples numTests = get(TQ_response, 'NumberOfTests');

See Also DefineTestGroups

2-63

OutlierIndices

Purpose Indices of the DoubleInputData marked as outliers

Syntax indices = OutlierIndices(R)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

Examples ind = OutlierIndices(R);
bad = OutlierIndices(thisRF);

See Also DoubleInputData

2-64

OutlierIndicesForTest

Purpose Indices marked as outliers for a particular test

Syntax indices = OutlierIndicesForTest(R, TestNumber)

Description This is a method of the local model object, mbcmodel.localresponse.

This shows the current records discarded as outliers.

You can use ’:’ to use all tests.

Examples ind = OutlierIndicesForTest(R, ':');
bad = OutlierIndicesForTest(local, tn);

See Also OutlierIndices

2-65

Owner

Purpose The object from which the data was received

Syntax O = get(D1, 'Owner')

Description This is a property of mbcmodel.data.

• This is empty if the data was created using mbcmodel.CreateData

• This is an mbcmodel.project object if the data was extracted from a
project

• This is an mbcmodel.testplan object if the data was extracted from
a test plan

Examples O = get(D1, 'Owner');

2-66

Parameters

Purpose The parameters in the model

Syntax P = get(model, 'Parameters')

Description This is a property of mbcmodel.model., that contains an object
mbcmodel.modelparameters. This object contains a number of
read-only parameters that describe the model.

All models have these properties:

• SizeOfParameterSet

• Names

• Values

Linear models also have these properties:

• StepwiseStatus

• NumberOfParameters

• StepwiseSelection

Radial Basis Function (RBF) models have all the above properties and
these additional properties:

• Centers

• Widths

Examples P = get(knot, 'Parameters');

See Also SizeOfParameterSet; Names; Values; StepwiseStatus;
NumberOfParameters; StepwiseSelection; Centers; Widths

2-67

ParameterStatistics

Purpose Calculates parameter statistics for the linear model

Syntax values = ParameterStatistics(linearmodel, optional statType)

Description This is a method of mbcmodel.model, for linear models only. This
calculates parameter statistics for the linear model. If you don’t specify
statType, then a structure with all valid types is output. statType
may be a string specifying a particular statistic or a cell array of string
specifying a number of statistics to output. If statType is a string, then
values is an array of doubles. If statType is a cell array of strings,
then values is a cell array of array of doubles.

The valid types are:

’Alias’

‘Covariance’

’Correlation’

’VIFsingle’

’VIFmultiple’

’VIFpartial’

’Stepwise’

These types (except Stepwise) appear in the Design Evaluation tool; see
the documentation for this tool for details of these matrices.

The Stepwise field contains the values found in the Stepwise table. In
this array (and in the Stepwise GUI) you can see for each parameter
in the model: the value of the coefficient, the standard error of the
coefficient, the t value and Next PRESS (the value of PRESS if
the status of this term is changed at the next iteration). See the
documentation for the Stepwise table. You can also see these Stepwise
values when you use StepwiseRegression.

2-68

ParameterStatistics

Examples values = ParameterStatistics(knot)
values =

Alias: [7x3 double]
Covariance: [7x7 double]

Correlation: [7x7 double]
VIFsingle: [5x5 double]

VIFmultiple: [7x1 double]
VIFpartial: [5x5 double]

Stepwise: [10x4 double]

values.Stepwise
ans =

1.0e+003 *
0.0190 0.0079 0.0210 NaN
0.0000 0.0000 0.0210 1.9801
0.0000 0.0000 0.0200 0.2984

-0.0000 0.0000 0.0200 0.2768
0.0000 0.0000 0.0200 0.2890

-0.0526 0.0367 0.0210 0.2679
0.0911 0.0279 0.0210 0.3837

-0.0041 0.0024 0.0210 0.2728
-0.0178 0.0095 0.0200 0.2460
0.0001 0.0000 0.0210 0.3246

See Also StepwiseRegression

2-69

PEV

Purpose Predicted Error Variance of the model at specified inputs

Syntax pev = PEV(R, X)

Description This is a method of the hierarchical, response and model objects:
mbcmodel.hierarchicalresponse, mbcmodel.response, and
mbcmodel.model.

R is the model object, and X is the array of input values where you want
to evaluate the PEV of the model.

Note that for an mbcmodel.model and mbcmodel.response objects only,
the the X is optional. That is, the syntax is:

PEV = PEV(model, optional X)

This calculates the Predicated Error Variance at X. If X is not specified,
then X is the existing input values. An array is returned of PEV values
evaluated at each data point.

Examples pev = PEV(R, X);

See Also PEVForTest

2-70

PEVForTest

Purpose Local model Predicted Error Variance for a particular test

Syntax pev = PEVforTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is the local model object.

TestNumber is the test for which you want to evaluate the model PEV.

X is the array of inputs where you want to evaluate the PEV of the
model.

Examples pev = PEVforTest(L, TestNumber, X);

See Also PEV

2-71

PredictedValue

Purpose Predicted Value of the model at specified inputs

Syntax y = PredictedValue(R,X)

Description This is a method of the hierarchical, response and model objects:
mbcmodel.hierarchicalresponse, mbcmodel.response, and
mbcmodel.model.

R is the model object, and X is the array of inputs where you want to
evaluate the output of the model.

Note that for an mbcmodel.model and mbcmodel.response objects only,
the X is optional. That is, the syntax is:

y = PredictedValue(model, optional X)

This calculates the predicted value at X. If X is not specified then the X
is the existing input values. An array is returned of predicted values
evaluated at each data point.

Note that you cannot evaluate model output for a hierarchical model
until you have constructed it using MakeHierarchicalResponse (or
CreateAlternativeModels). If you have created alternative response
feature models then a best model must be selected. If you have made
changes such as removing outliers since choosing a model as best, you
may need to choose a new best model.

Examples y = PredictedValue(R, X);
modelPred = PredictedValue(thisRF, x);

See Also PredictedValueForTest; ChooseAsBest

2-72

PredictedValueForTest

Purpose Predicted local model response for a particular test

Syntax y = PredictedValueForTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is a local model object.

TestNumber is the test for which you want to evaluate the model

X is the array of inputs where you want to evaluate the output of the
model.

Examples y = PredictedValueForTest(L, TestNumber, X);

See Also PredictedValue

2-73

RecordsPerTest

Purpose Number of records in each test

Syntax get(D, 'RecordsPerTest')

Description This is a property of data objects: mbcmodel.data. It returns an array,
of length NumberOfTests, containing the number of records in each test.

Examples numRecords = get(Data, 'RecordsPerTest');

2-74

Remove

Purpose Removes the project, test plan, or model.

Syntax OK = Remove(A)

Description This is a method of all the non-data objects: projects, test plans and
all models.

A can be any project, test plan or model object.

Datum models cannot be removed if they are in use by other models.

Examples OK = Remove(R3);

2-75

RemoveData

Purpose Remove data from the project

Syntax P = RemoveData(P, D)
P = RemoveData(P, Index)

Description This is a method of mbcmodel.project.

You can refer to the data object either by name or index.

P is the project object.

D is the data object you want to remove.

Index is the index of the data object you want to remove.

Examples RemoveData(P, D);

See Also CreateData; Data; CopyData

2-76

RemoveFilter

Purpose Remove a user-defined filter from a data set

Syntax D = RemoveFilter(D, Index)

Description This is a method of the mbcmodel.data object.

Index is the input index indicating the filter to remove. Use the
property Filters to find out which filters are present.

Examples RemoveFilter(D1, 3);

See Also AddFilter; Filters

2-77

RemoveOutliers

Purpose Remove outliers in the input data by index or rule, and refit models

Syntax R = RemoveOutliers(R, Selection);
R = RemoveOutliers(L, LocalSelection, GlobalSelection)

Description This is a method of the local model object, mbcmodel.localresponse
and the response feature model object mbcmodel.response.

All the response feature models are refitted after the local models are
refitted. Outlier selection is applied to all tests.

For a response model:

• R is a response object

• Selection specifies either a set of indices or the name of an outlier
selection function, of the following form:

Indices = myMfile(model, data, factorName)

The factors are the same as defined in DiagnosticStatistics

• data contains the factors as columns of a matrix

• factorNames is a cell array of the names for each factor

For a local model:

• LocalSelection is the local outlier selection indices or function

• GlobalSelection is the global outlier selection indices or function

Outlier selection functions must conform to this prototype:

Indices = myMfile(model, data, factorName)

The factors are the same as appear in the scatter plot in the Model
Browser.

• data contains the factors as columns of a matrix

2-78

RemoveOutliers

• factorNames is a cell array of the names for each factor

Examples outlierind = [1 4 6 7];
RemoveOutliers(thisRF, outlierind);

See Also RemoveOutliersForTest

2-79

RemoveOutliersForTest

Purpose Remove outliers on a particular test by index or rule and refit models

Syntax R = RemoveOutliers(L, TestNumber,LocalSelection,GlobalSelection);

Description This is a method of the local model object, mbcmodel.localresponse.

All the response feature models are refitted after the local models are
refitted.

L is the local model object.

TestNumber is the single test number to refit.

LocalSelection is either a set of indices or the name of a local outlier
selection function.

GlobalSelection is either a set of indices or the name of a global
outlier selection function.

Outlier selection functions must take the following form:

Indices= myMfile(model, data, factorName);

The factors are the same as defined in DiagnosticStatistics.

data contains the factors as columns of a matrix.

factorNames is a cell array of the names for each factor.

Examples RemoveOutliersForTest(local, tn, indices);

See Also RemoveOutliers

2-80

RemoveTestFilter

Purpose Remove a user-defined test filter from a data set

Syntax D = RemoveTestFilter(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the filter to remove.

Use the property TestFilters to find the index of the test filter you
want to remove.

Examples RemoveTestFilter(D1, 2);

See Also AddTestFilter; TestFilters

2-81

RemoveVariable

Purpose Remove a user-defined variable from a data set

Syntax D = RemoveVariable(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the variable to remove.

Use UserVariables to find the index of the variable you want to remove.

Examples RemoveVariable(D1, 2);

See Also AddVariable; UserVariables

2-82

Response

Purpose The response for a model object

Syntax R = get(model, 'Response')

Description This is a property of mbcmodel.model. It returns the response the
model object came from (e.g. a response object).

If you make changes to the model object (for example by changing the
model type using ModelDialog) you must use UpdateResponse to return
the new model object to the response in the project.

.

Examples R = get(knot, 'Response');

See Also UpdateResponse; ModelDialog

2-83

ResponseFeatures

Purpose Array of ResponseFeatures for this response

Syntax RFs = get(L, 'ResponseFeatures')

Description This is a property of the local model object, mbcmodel.localresponse.

L is the local response.

See “Understanding Model Structure” for an explanation of the
relationships between local responses and other responses.

Examples RFs = get(local, 'ResponseFeatures');

2-84

ResponseSignalName

Purpose Name of the signal or response feature being modeled

Syntax ysignal = get(R, 'ResponseSignalName')

Description This is a property of all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R can be a hierarchical response, local response or response.

Examples yName = get(local, 'ResponseSignalName');

See Also InputSignalNames

2-85

Responses

Purpose Array of available responses for the test plan

Syntax R = get(T, 'Responses')

Description This is a property of mbcmodel.testplan.

T is the test plan object.

See for an explanation of the relationship between test plans and
responses.

Examples R = get(T, 'Responses');

2-86

RollbackEdit

Purpose Undo most recent changes to the data

Syntax D = RollbackEdit(D)

Description This is a method of mbcmodel.data. Use this if you change your mind
about changes you have made to the data since you called BeginEdit,
such as importing or appending data, applying filters or creating new
user variables.

There are no input arguments. If for your data object D, IsBeingEdited
is true, then RollbackEdit will return it to the same state as it was
when BeginEdit was called. If IsEditable(D) is true then you can still
modify it, if not it will revert to being read-only. See the example below.

Examples D = get(P, 'Data');
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
RollbackEdit(D);

This returns the data object D to the same state as when BeginEdit was
called. If the data object IsEditable then the returned object will still
return true for IsBeingEdited, else it will not be editable.

For an example case where IsEditable is false and IsBeingEdited
is true:

D = get(p, 'Data');
D1 = get(p, 'Data');
BeginEdit(D1);
tp = get(p, 'Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

2-87

RollbackEdit

At this point IsEditable for D1 becomes false because it is now
Attached to the test plan and hence can only be modified from the test
plan. However

OK = get (D1, 'IsBeingEdited')

will still be true at this point, and trying to call CommitEdit will fail.

See Also BeginEdit; CommitEdit; IsBeingEdited

2-88

Save

Purpose Save project to currently selected filename

Syntax OK = Save(P, Name)

Description This is a method of mbcmodel.project.

Examples OK = Save(proj, 'Example.mat');

See Also SaveAs

2-89

SaveAs

Purpose Save project to a new file

Syntax OK = SaveAs(P, Name)

Description This is a method of mbcmodel.project.

Examples OK = SaveAs(proj, 'Example.mat');

See Also Save

2-90

SignalNames

Purpose Names of the signals held by the data

Syntax names = get (D, 'SignalNames')

Description This is a property of mbcmodel.data.

This is a cell array of strings that hold the names of the signals within
the data. These names can be used to reference the appropriate signals
in the Value method. The subset of these names that are being
used for modeling may also be found in the test plan and responses
InputSignalNames properties.

Examples names = get (D, 'SignalNames');

See Also SignalUnits; InputSignalNames; Value

2-91

SignalUnits

Purpose Names of the units in the data

Syntax units = get(D, 'SignalUnits')

Description This is a property of mbcmodel.data.

D is the data object.

It returns a cell array of strings holding the units of the signals.

Examples units = get(D, 'SignalUnits');

See Also SignalNames

2-92

SizeOfParameterSet

Purpose The number of parameters for a model

Syntax N = get (params, 'SizeOfParameterSet')

Description This is a property of mbcmodel.modelparameters. It returns the total
possible number of parameters in the model. Note that not all of these
terms are necessarily currently included in the model, as you may
remove some using StepwiseRegression.

Call NumberOfParameters to see how many terms are currently
included in the model. Call StepwiseSelection to see which terms are
included and excluded.

Use Names and Values to get the parameter names and values.

Examples N = get (knotparams, 'SizeOfParameterSet')

See Also NumberOfParameters; StepwiseSelection; Names; Values

2-93

Status

Purpose The model status: fitted, not fitted or best

Syntax S = get(model, 'Status')

Description This is a property of mbcmodel.model. It returns a string: ‘Fitted' if
the model is fitted, ‘Not fitted' if the model is not fitted (for example
there is not enough data to fit the model), or ‘Best' if the model has
been selected as best from some alternative models. A model must be
Fitted before it can be selected as Best.

Examples S = get(knot, 'Status')
S =

`Fitted'

See Also ChooseAsBest;

2-94

StepwiseRegression

Purpose Change stepwise selection status for specified terms

Syntax S = StepwiseRegression(model, optional toggleTerms)

Description This is a method of mbcmodel.model, for linear models only. This
method returns the Stepwise table (as in the Stepwise values for
ParameterStatistics). Leave out toggleTerms to get the current
Stepwise values. You can choose to remove or include parameters using
StepwiseRegression, as long as their StepwiseStatus is Step.

The Stepwise values returned are the same as those found in the table
in the Stepwise GUI. For each parameter, the columns are: the value
of the coefficient, the standard error of the coefficient, the t value and
Next PRESS (the value of PRESS if the status of this term is changed at
the next iteration). Look for the lowest Next PRESS to indicate which
terms to toggle in order to improve the predictive power of the model.

Call StepwiseRegression to toggle between in and out for particular
parameters. toggleTerms can be either an index that specifies which
parameters to toggle, or an array or logical where a true value indicates
that a toggle should occur. The example shown toggles parameter 4,
after inspection of the Next PRESS column indicates changing the
status of this term will result in the lowest PRESS. StepwiseRegression
returns the new Stepwise values after toggling a parameter.

Use StepwiseStatus (on the child modelparameters object) to see which
parameters have a status of Step; these can be toggled between in and
out using StepwiseRegression (on the parent model object).

Use StepwiseSelection (on the child modelparameters object) to view
which terms are in and out, as shown in the example.

Examples S = StepwiseRegression(knot)
S =

1.0e+003 *

2-95

StepwiseRegression

0.1316 0.0606 0.0200 NaN
0.0000 0.0000 0.0200 2.0919
0.0000 0.0000 0.0190 0.2828

-0.0000 0.0000 0.0190 0.2531
0.0000 0.0000 0.0190 0.2680

-0.0551 0.0347 0.0200 0.2566
0.0919 0.0264 0.0200 0.3672

-0.0040 0.0023 0.0200 0.2564
-0.0178 0.0095 0.0200 0.2644
0.0008 0.0004 0.0200 0.2787

S = StepwiseRegression(knot, 4)

S =

129.8406 60.1899 19.0000 NaN
0.0048 0.0008 19.0000 662.3830
0.0000 0.0000 18.0000 290.8862

-0.0021 0.0019 19.0000 245.9833
0.0001 0.0002 18.0000 281.4104

-50.4091 34.7401 19.0000 262.8346
94.9675 26.3690 19.0000 400.6572
-4.0887 2.2488 19.0000 262.6588

-17.9412 9.4611 19.0000 276.7535
0.8229 0.3734 19.0000 292.0827

params = get(knot, 'Parameters');
N = get (params, 'StepwiseSelection')

N =
'in'
'in'
'out'
'in'
'out'
'in'
'in'

2-96

StepwiseRegression

'in'
'in'
'in'

>> StepwiseRegression(knot, 4);
params = get(knot, 'Parameters');
N = get (params, 'StepwiseSelection')

N =
'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseSelection; StepwiseStatus

2-97

StepwiseSelection

Purpose Which model parameters are currently included and excluded

Syntax N = get (paramsknot, 'StepwiseStatus')

Description This is a read-only property of mbcmodel.modelparameters, for linear
models only. It returns a status for each parameter in the model, in
or out, depending on whether the term is included or excluded. You
can choose to remove or include parameters using StepwiseRegression,
as long as their StepwiseStatus is Step. Call StepwiseRegression (on
the parent model object) to toggle between in and out for particular
parameters.

Examples N = get (paramsknot, 'StepwiseSelection')
N =

'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseRegression; StepwiseStatus; NumberOfParameters

2-98

StepwiseStatus

Purpose The stepwise status of parameters in the model

Syntax N = get (paramsknot, 'StepwiseStatus')

Description This is a method of mbcmodel.modelparameters, for linear models only.
It returns the stepwise status of each parameter in the model.

The stepwise status for each term can be Always, Never or Step.
The status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

• Always - Always included in the model

• Never - Never included in the model

• Step - You can choose whether to include or exclude this term. Do
this by using StepwiseRegression to toggle between in and out for
particular parameters.

Use StepwiseSelection to find out which terms are currently included
and excluded.

Examples N = get (paramsknot, 'StepwiseStatus')
N =

'Always'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'

See Also StepwiseRegression; StepwiseSelection

2-99

SummaryStatistics

Purpose Summary statistics for the response

Syntax S = SummaryStatistics(R, Name)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse, mbcmodel.response, and mbcmodel.model.

These are the statistics that appear in the Summary Statistics pane of
the Model Browser GUI.

R is the response object.

S is a structure array containing Statistics and Names fields for the
response R.

Name is an optional input where you can specify which statistics you
want. If you do not use Name all statistics are calculated.

Examples S = SummaryStatistics(R2);

See Also DiagnosticStatistics; AlternativeModelStatistics

2-100

TestFilters

Purpose Structure array holding the user-defined test filters

Syntax testf = get (D, 'TestFilters')

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined test filters for the data object D. The array will be the same
length as the number of currently defined test filters, with the following
fields for each filter:

• Expression — The string expression as defined in AddTestFilter or
ModifyTestFilter.

• AppliedOK — Boolean indicating that the filter was successfully
applied.

• RemovedTests — Boolean vector indicating which tests the filter
removed. Note that many filters could remove the same test.

• Message — String holding information on the success or otherwise
of the filter.

Examples testf = get (D, 'TestFilters');

See Also AddTestFilter; ModifyTestFilter; RemoveTestFilter

2-101

TestPlans

Purpose Array of test plan objects contained in the project

Syntax tps = get (P, 'TestPlans')

Description This is a property of mbcmodel.project.

P is the project object.

Examples tps = get (P, 'TestPlans');

2-102

UpdateResponse

Purpose Replaces the model in the response

Syntax UpdateResponse(model)

Description This is a method of mbcmodel.model. This takes the model and places it
back into the response it came from. Appropriate action is taken if a
refit is necessary because you have modified either the model, response
data or model data in the interim. For example, if you have changed
the model type, the new model is fitted to the response data. If you
have changed the response data (e.g. removed an outlier), the model is
fitted to the new response data.

Note that when changing the model type or settings (using the
ModelDialog command) the response is not refitted until you call
UpdateResponse.

Examples UpdateResponse(knot);

See Also ModelDialog

2-103

UserVariables

Purpose Structure array holding the user-defined variables

Syntax userV = get(D, 'UserVariables')

Description This is a property of mbcmodel.data.

This returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined variables, with fields

• Variable — variable name

- Expression — The string expression as defined in AddVariable
or ModifyVariable

- Units — The string defining the units

- AppliedOK — Boolean indicating that the variable expression was
successfully applied

- Message — String holding information on the success or otherwise
of the variable

Examples myvars = get(D1, 'UserVariables')

This returns the following information about the user-defined variable
in the example data object D1:

Variable: 'BSFC'
Expression: 'BSFC = FUELFLO./(BTQ.*(ENGSPEED*2*pi/60))'

Units: 'kg/Nm'
AppliedOK: 1

Message: 'Variable successfully added'

Variable is the parsed name of the variable being added. Note that
this might differ from the string used in AddVariable because the
SignalName must be a valid MATLAB variable name, and hence MBC
will parse and modify the input string appropriately.

2-104

UserVariables

See Also AddVariable; ModifyVariable; RemoveVariable

2-105

Value

Purpose Get the double data from a data object

Syntax val = Value(D, varNames, testNumbers)

Description This is a method of mbcmodel.data.

Use this to extract particular data values.

varNames is an optional input that specifies either the name of the
signal that you want to extract (such as 'SPK') or an array of names
({'SPK' 'AFR' 'TQ'}) the indices of the signals ([1 4 5]). Defaults to
’:’ meaning all.

testNumbers is an optional input that specifies which test indices you
want. Defaults to ’:’ meaning all.

val outputs the double values held in the data.

Examples dblValues = Value(D, 'SPK', 1);
dblValues = Value(D, {'SPK' 'AFR'}, ':');
dblValues = Value(D, [1 3 4 5]);
dblValues = Value(D, ':', [1 4 6 8]);

See Also SignalNames

2-106

Values

Purpose The values of model parameters

Syntax vals = get (paramsknot, 'Values')

Description This is a read-only property of mbcmodel.modelparameters. It returns
the value of each parameter in the model. Use Names to find out the
names of these terms.

Examples vals = get (paramsknot, 'Values');

See Also Names

2-107

Widths

Purpose The width data from an RBF model

Syntax Width = get(params, 'Widths')

Description This is a property of mbcmodel.modelparameters, for Radial Basis
Function (RBF) models only.

Width is usually a single value, but can also be of size 1 by number of
variables in the case of the width per dimension algorithm, or number
of centers by number of variables in the case of tree regression.

Examples Width = get(params, 'Widths');

See Also Centers

2-108

XData

Purpose The X (or input) data for a model

Syntax D = get (model, 'XData')

Description This is a property of mbcmodel.model. It returns an array of the input
variable data currently in the model.

Examples D = get (knot, 'XData');

See Also XDataNames; YData

2-109

XDataNames

Purpose The X data (or input) variable names for a model

Syntax D = get (model, 'XDataNames')

Description This is a property of mbcmodel.model. It returns the names of the input
variables in the data.

Examples D = get (knot, 'XDataNames');

See Also XData

2-110

YData

Purpose The Y (or response) data for a model

Syntax D = get (model, 'YData')

Description This is a property of mbcmodel.model.

It returns an array of the response data currently in the model.

Examples D = get (knot, 'YData');

See Also XData

2-111

	toc
	Commands – Categorical List
	Handling Data
	Handling Projects
	Handling Test Plans
	Handling Models
	Hierarchical Models
	Local Models
	Response Models
	Models
	Model Parameters

	Commands — Alphabetical List

